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Chapter 1

Introduction

3D RNA structures and fold into complex three-dimensional structures that determine their
biological function. Despite significant advancements in research over the past several decades,
our understanding of the fundamental origins of these structures remains limited. While the
CASPI15 [1] and the RNA-Puzzles [2][3] competition confirmed we can predict where RNA
nucleotides will form canonical base pairs with remarkable accuracy, the non-canonical and
long-range interactions that give RNA its functional form remain largely invisible to compu-
tational models. This thesis goes deep into uncharted territory, aiming to understand the
hidden interactions of RNA through the application of artificial intelligence to assess general
quality of 3D RNA structures.

1.1 Motivation

Recent years have been fruitful with generative models able to generate biological 3D struc-
tures of proteins. Google DeepMind laboratory made a breakthrough in 2022, presenting a
model which, for the first time, outperforms human predictors in a protein 3D structure mod-
elling contest [4]. The accomplishments achieved are a result of extensive data collected over
numerous years of dedicated research on proteins. The RNA case is quite the opposite; the
number of distinctive RNA families with assigned experimentally determined 3D structures
is narrow, with only a few candidates in each. These conditions introduced a serious problem
for typical approaches such as transformer-based models, which require a high number of di-
verse and high-quality samples. The cost of experimentally deriving the complex 3D structure
is significant, so any options to omit the expense are warmly welcomed. In recent years, the
RNA-Puzzles contest has emerged as a platform to identify the most effective computational
methods for predicting 3D RNA structures. To date, the competition has conducted 39 chal-
lenges (five editions) over its 10-year existence. That is a tiny drop in the ocean of demand
for fast domain field evolution. Therefore, scientists seek a more efficient way of testing their
computational approaches. The best solution assumes the existence of a referee, a tool, or an
expert capable of such an assessment. Some methods try to fulfil the demand for such a tool,
but unfortunately, the results are not satisfying.

1.2 Goal

The thesis focuses on fulfilling the demand for such a referee by providing a computational
model that enables the assessment of 3D RNA models referencelessly using the RMSD metric.
The simplest solution to this problem can be solved using the Root Mean Squared Deviation
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1.3. RNA as Data and Matter: Bridging Biological and Chemical Views 2

metric. Still, the calculation is only possible when the target structure is available and con-
sists of the same number of atoms (the same RNA sequence). The algorithm then considers
atoms as separate entities for comparing 3D structures. Next, the algorithm takes atoms for
both structures and superimposes them; later, the RMSD [5] is computed using the following
formula:

n

1
MSD = *E iz — Wiz )? iy — Wiy)? iz — Wiz)?
RMS n ((v Wig)? + (Viy — wiy)? + (v wiz)?)

i=1

Where:
* {Vig, Uiy, Viz } - corresponding x,y, z for ¢ atom from structure v,
* {Wiz, Wy, w;,} - corresponding x, y, z for ¢ atom from structure w,
¢ n - number of atoms within structure.

The problem becomes more complex when only the 3D model is under evaluation. The chal-
lenge requires an algorithm with a deep understanding of the characteristics of 3D RNA struc-
tures, which is ideally suited for artificial intelligence applications. The objective is to create
a computational model optimized for deployment on resource-constrained personal devices.

1.3 RNA as Data and Matter: Bridging Biological and Chemical

Views

As a biochemical structure, RNA can be viewed as segments of data that encode biological
functions, or as minuscule components, such as atoms, that form chemical compounds. By
combining these characteristics, one can develop an interdisciplinary understanding of the

subject. This approach has yet to be utilised in any other state-of-the-art solutions.

1.3.1 Biological view

Biological researchers use nucleotides to represent RNA sequences, which is the simplest
possible representation of their structure. The bag of words of potential bases for nucleotides
consists of four: Adenine (A), Cytosine (C), Guanine (G), and Uracil (U), of which the last one
is an exclusive base for RNA. Modified nucleotides are also a notable exception, but they are
a relatively rare occurrence and are therefore usually omitted.

Scientists always depict the beginning of the sequence as 5’-end and the end as 3’-end, as
the Figure 1.1 shows. The nucleobases are connected to a sugar-phosphate backbone, creating
a chain/strand that ultimately combines the spatial features of the 3D RNA structure.

Sequence (5’ to 37):
UGCUCCUAGUACGAGAGGAACGGAGUG

Ficure 1.1: RNA sequence (1D) given for RNA-Puzzle 11 challenge.

The RNA secondary (2D) representation enriches sequences with spatial information related
to base pairing, providing insight into the tertiary relationships between nucleotides. Base
pairings are distinguished into canonical and non-canonical ones.
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Watson-Crick-Franklin (Canonical) pairing

Well-known and explored standard Watson-Crick—Franklin base pairs representation almost
always takes into consideration non-overlapping pairs of Adenine-Uracil and Guanine-Cytosine.
The interaction involves standard, strong, and hard-to-dissolve hydrogen bonding contacts;
breaking such interactions requires a high amount of energy. Canonical pairings introduce
high-level motifs into structures such as helices, stems, and loops. Secondary structure can
be represented in both graphical and textual ways. The most straightforward representation
is to use dots for non-interacting nucleotides and brackets to indicate interaction with the
corresponding open and closed residues that form a base pair.

Example:

Sequence (5’ to 3’):
UGCUCCUAGUACGAGAGGAACGGAGUG

Ficure 1.2: RNA secondary structure (2D) given for RNA-Puzzle 11 challenge.

Figure 1.2 illustrates the secondary structure of an RNA hairpin loop, where a double-
stranded stem is formed by canonical base pairing. The stem extends from the second nu-
cleotide at the 5’ end to the sixth residue before the loop on one strand, and from residues
22 to 26 on the complementary strand. At the bottom of the Figure 1.2, a single-stranded
hairpin loop contains 15 unpaired nucleotides that remain flexible. The green curve traces
the sequential order of the RNA strand from 5’ to 3’, while blue circles represent individual

nucleotides (A, U, G, C).

5| ? 3'
c 7
L
C

Ficure 1.3: RNA secondary stucture given for RNA-Puzzle 11 challenge, graphical representation.

It is worth mentioning other properties that could be derived from the chart, such as se-
quence distance. The value is calculated based on the distance between residue serial num-
bers, as indicated by the green line between two selected nucleotides. It is primarily associated
with pairing information to maintain the structural context.

To introduce a non-canonical pairing, it is necessary to introduce the chemical represen-
tation of RNA and the characteristics associated with molecular interactions.
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1.3.2 Chemical view

RNA nucleobases can be represented purely using chemical compound descriptions. The
chemical knowledge enables new approaches to extract features and interactions between

biological components.

Basic units forming RNAs

Adeine

Ficure 1.4: Chemical representation of Adeine; image from public domain.

Atoms within the compound form a pentagon with a hexagon two-ring structure. The

compound consists of two atoms that are capable of forming hydrogen bonds.

Uracil

Ficure 1.5: Chemical representation of Uracil; image from public domain.

In this case, the compound form consists of a single hexagonal ring. The compound consists

of two atoms that are capable of forming hydrogen bonds.

Guanine
N O ...........
D
N—_//
NH-
/
N—
NH;

Ficure 1.6: Chemical representation of Guanine; image from public domain.

The compound forms a similar structure to Adeine, but Guanine differs in having three
atoms that are capable of forming stronger interactions, namely, hydrogen bonds.

Cythosine
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Ficurk 1.7: Chemical representation of Cythosine; image from public domain.

Cytosine shares the same structure as Uracil, creating a single hexagonal ring. The com-
pound, having three free atoms for creating interactions, typically creates a strong connection
with Guanine.

Sugar-phosphate backbone

T
P .
o\ O
HO™ &
Ho
HO
HO H
0
H OH

Ficurk 1.8: Chemical representation of Sugar-phosphate backbone; image from public domain.

Bonds

Each of the mentioned chemical compounds is made of atoms connected by bonds. The
atom interactions can be distinguished into two groups. Covalent interactions are based on
the sharing of electrons between atoms, creating the strongest possible known interactions.
Alternatively, Ion interactions, which use electrostatic attraction between oppositely charged
ions, create weak tangles.

The distances of such bonds can vary between pairs of atoms; therefore, properly modelling
them is crucial for determining the final RNA structure fold.

Another type of bond (non-covalent one) is the hydrogen bond, where an H atom covalently
bonded to an electronegative atom (N, O, or F) interacts with another electronegative atom,
playing a crucial part in forming base pairs in biological structures.

Purines and Pyrimidine

The distinction was introduced to distinguish the direction of forming base pairing. Pyrim-
idine base nucleotides create a single-ring structure (a 6-membered ring, or hexagon), while
purine creates a double-ring structure (a 6-membered ring, or hexagon, and a 5-membered
ring, or pentagon) that shares one bond. In the RNA universe, nucleotides can be easily cat-
egorised into:

¢ Purins: Guanine (Figure 1.6) and Adenine (Figure 1.4),

¢ Pyrimidines: Uracil (Figure 1.5) and Cytosine (Figure 1.7).
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RNA base pairs

Base pairing from a chemical point of view
From a Watson—Crick—Franklin base pairs point of view, nucleobases connect with their
corresponding nucleobases, which are not identical, but have the same number of available

atom slots for interaction.

Ficure 1.10: Formed pair of Guanine and Cythosine [6].

Figures 1.9 and 1.10 show formed hydrogen bonds (base pairing) between corresponding
nucleobases. The waves symbolise attachment with a sugar backbone.

Non-canonical pairing

Non-canonical pairing extends the base knowledge that was associated with classic canon-
ical pairing.

The Leontis-Westhof classification system [7] categorises non-canonical base pairs based

on three main criteria:

¢ Edge combinations: Six possible pairings (W:W, W:H, W:S, H:H, H:S, S:S);
Watson—Crick—Franklin (W), Hoogsteen (H), and Sugar (S).

® Glycosidic bond orientation: Cis or trans arrangements.
* Base identities: The specific nucleobases involved.

The rules governing non-canonical base pairing are more flexible than those of Watson—Crick—Franklin
pairing. Nucleotides can form hydrogen bonds using alternative geometric arrangements and
orientations, sometimes sharing atoms between multiple pairing interactions. This flexibil-
ity enables the formation of higher-order structures such as base triples (triads) and base
quadruples (Figure 1.15). The distinction between purins and pyrimidines plays a crucial
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Hoogsteen
edge

4 Pyrimidine
H-N

Hoogsteen

edge Watson-Crick

edge sugar edge

sugar edge

Ficure 1.11: Edges of possible pairings for purines and pytimidines [8].

role. Base pairings can occur only between these groups. It is not possible to create hydrogen
bonds between single purins and single pyrimidines.

Figure 1.11 presents the edges of nucleotides that can interact with each other, creating
all six possible combinations of pairing.

Ficure 1.12: Adeine and Uracil base pairing creating H:W; Hoogsteen:Watson—Crick—Franklin; public domain.

The second property connected to non-canonical base pairing focuses on the orientation of
pairing (cis and trans):

N NH2 ......... O
- \
D=y \
/ N NH
=
J N

Ficure 1.13: Cis (common) direction of base pair.

¢ cis (Figure 1.13): The glycosidic bonds of the two nucleotides are on the same side,

¢ trans (Figure 1.14): The glycosidic bonds are on opposite sides.
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Ficure 1.15: Example of quadruplex derived from PDB 1KF1 [6].

F - Fa

Buckle Open Propeller Stagger Shear Stretch

Ficurk 1.16: Parameters describing geometry of base pairs [6].

Rigid-body parameter relationships connected to angles within base pairing were explored
and classified by the International Union of Pure and Applied Chemistry. They proposed pa-
rameters used to describe geometry (see Figure 1.16). The description provides a better un-
derstanding of the relationship without relying on an absolute Cartesian coordinate system.

The six parameters are organised into two fundamental categories reflecting their math-
ematical nature and structural significance. Shear, Stretch, and Stagger measure displace-
ments in Angstrom units, while Buckle, Propeller, and Opening quantify angular relation-
ships in degrees [9].

Shear represents lateral displacement along the x-axis between paired bases, describing
the sliding motion that optimises hydrogen bonding geometry. This parameter is particularly
diagnostic for base pair classification. Watson-Crick—Franklin pairs show Shear values near
zero, while G-U wobble pairs exhibit characteristic Shear values of -2.2 A[10]. The parameter
captures the fundamental geometric adjustment that allows non-canonical pairs to maintain
stable hydrogen bonding despite altered base orientations.

Stretch measures separation along the y-axis, approximately corresponding to the direc-
tion of hydrogen bonding. This parameter reveals how bases adjust their proximity to optimise
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electrostatic interactions. Watson-Crick—Franklin pairs maintain Stretch values near zero,
but Hoogsteen A-U pairs show Stretch values around -3.5 A [10], reflecting their dramatically
altered hydrogen bonding geometry where bases approach from opposite sides of the major
groove.

Stagger quantifies vertical displacement along the z-axis, measuring how bases are offset
perpendicular to their planes. This parameter contributes to base pair non-planarity and
affects stacking interactions with adjacent base pairs in the helical structure.

The rotational parameters describe angular relationships that influence RNA structure
and stability. Buckle measures rotation about the x-axis, creating the "book-opening" motion
that causes bases to be non-coplanar. Propeller describes rotation about the y-axis, generat-
ing the blade-like twisting that is crucial for optimising base stacking interactions. Watson-
Crick—Franklin pairs typically show negative Propeller values around -11° [9], which enhance
stacking interactions and contribute to helical stability.

Opening measures rotation about the z-axis [9], determining the angular relationship be-
tween bases in their plane. Watson-Crick—Franklin pairs maintain Opening values near zero,
but Hoogsteen pairs can show Opening values around 66°[9], reflecting their fundamentally
different hydrogen bonding geometry.

Angular representation RNAs

Bond angles are a group of structural parameters that describe the geometric configuration
of RNA nucleotides, including their ribose sugar backbone and nitrogenous bases. Due to
their relative nature, these measurements provide an effective way to characterise the three-
dimensional conformation and local geometry of RNA structures. Bond angles are calculated

from the spatial arrangement of three consecutive covalently bonded atoms.

Torsion angles are a more sophisticated description of nucleotides. The IUPAC stan-
dardised nomenclature system defines seven primary torsion angles per RNA nucleotide, each
specified by four consecutive atoms. They require four adjacent bonded atoms to calculate two
planes, and then the angle between them.

03"
2]

21
02" 02

Ficure 1.17: Torsion angles on the left (A) and pseudo-torsion angles on the right (B) in RNA structure [11].

Figure 1.17 illustrates the complete set of torsion angles in nucleic acid structures across
three distinct panels. Panel A (upper left) displays the seven backbone torsion angles («, £,
7,0, €, ¢) along the sugar-phosphate backbone chain, with the glycosidic angle x defining the
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TasLE 1.1: Torsion (TA) and pseudo-torsion (PA) angles defined for RNA [11].

TA Atomsinvolved TA Atoms involved PA Atoms involved
«a 03,,_1-P-05’-C5’ X 04’-C1’-N1-C2 (pyrimidines) n C4,,_1-P-C4-Pp 11
B P-05-C5-C4’ 04’-C1’-N9-C4 (purines) 0 P-C4-P,11-C4 041
~y 05-C5-C4-C3’ vg C4-04-C1-C2 n' C1,,—1-P-C1-Pp 41
) C5-C4’-C3-03’ vy 04-C1-C2-C3 0’ P-C1-Py41-C1p 41
€ C4’-C3-03-0 ve  CI-C2-C3-C4
¢ C3-03-P-05,+1 vy C2-C3-C4-04

vy C3-C4-04-CT

base-sugar orientation. The six backbone angles follow the phosphodiester linkage: « controls
phosphate-sugar connectivity, 8 governs the O5’-C5’ bond rotation, v influences sugar pucker
coupling, ¢ directly correlates with sugar conformation, ¢ links to the next phosphate, and ¢
completes the backbone connection.

The glycosidic angle x requires different atomic definitions for purines (04 —C1'— N9—C4)
versus pyrimidines (04’ — C'1’ — N1 — (C2). This angle determines whether bases adopt syn
(—90° to 90°) or anti (90° to —90°) conformations relative to the sugar.

Panel B (right) illustrates the simplified pseudo-torsion angles 6 and ,, which provide two-
dimensional representations of the backbone geometry. These virtual bond representations
(built on nonconsecutive atoms) have proven essential for systematic conformational classi-
fication and structural validation [12]. The lower left panel presents the five sugar pucker
angles ((vo — v4) that describe the endocyclic torsions within the ribose ring structure. Table
1.1 provides the precise atomic definitions for each angle, specifying which four consecutive
atoms participate in each torsion measurement.

The comprehensive torsion angle parameters enable complete structural encoding of three-
dimensional nucleic acid geometry through systematic description of conformational features.
This torsional representation provides a sequential encoding framework that incorporates
inter-nucleotide relationships, offering advantages over absolute Cartesian coordinate sys-
tems by capturing the intrinsic flexibility and relative positioning of structural elements
within the molecular chain.

1.3.3 3D RNA structure determination methods

Only 4,422 RNA representative structures exist in the Protein Data Bank [13] compared to
over 200,000 protein structures. There are two representation formats of 3D structures.

¢ PDB: legacy format; first presentation took place in the 80s, the format is characterised
by strictly defined columns.

* mmCIF/PDB: new format; in contrast to the legacy format, it is flexible, enabling users
to define their fields and tables with several columns aligned to user needs.

Three primary methods exist for experimentally determining 3D RNA structures. The cost
of these operations remains significant to this day.
X-ray Crystallography

X-ray crystallography exploits the diffraction of electromagnetic radiation by periodic crystal
lattices to determine atomic coordinates. When X-rays interact with electrons in a crystal,
they undergo elastic scattering, producing diffraction patterns that are the Fourier transform
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of the electron density distribution [14]. This provides the highest atomic precision, often

achieving < 2 A resolution.

Nuclear Magnetic Resonance Spectroscopy

NMR exploits the magnetic properties of atomic nuclei with non-zero spin angular momen-
tum. Chemical shifts arise from electronic shielding effects, providing structural information
about local environments. The method’s outputs are the constraints that encompass the ac-
tual shape of the 3D structure coordinates [15].

Cryo-EM - Electron Microscopy

Cryo-EM preserves biological specimens in vitreous ice, maintaining near-native conforma-
tions while enabling high-resolution imaging. The contrast transfer function describes the
relationship between the object wave function and the formation of an image [16]. Recent
advances achieve near-atomic resolution for large macromolecular assemblies.

Comparative Analysis

Each method presents distinct trade-offs. Crystallography delivers superior atomic preci-
sion but requires challenging RNA crystallization, with expensive preparation yet established
analysis protocols. NMR operates under native conditions and reveals dynamics but is limited
to < 100 nucleotides, requiring costly isotopic labeling and sophisticated analysis. Cryo-EM
avoids crystallization and handles large complexes with straightforward preparation, though
demanding computational processing and struggling with molecules < 150 kDa.

1.4 Evaluation datasets

1.4.1 RNA-Puzzles

RNA-Puzzles is a collaborative scientific initiative designed as a collective experiment for
blind 3D RNA structure prediction. The project operates by confidentially providing RNA
sequences from solved structures to participating computational modelling groups, enabling
them to predict the 3D structure without prior knowledge of the experimentally determined
3D structure. The primary goals include determining the capabilities and limitations of cur-
rent computational methods for RNA structure prediction, assessing progress in the field,
identifying bottlenecks that impede advancement, and promoting the availability of predic-
tion tools to guide users in selecting appropriate methods.

1.5 Scope of the work

This study examines the potential of graph-based representations of three-dimensional RNA
structures in machine learning applications, with a specific focus on their efficacy in training
predictive models for structural analysis. It investigates the influence of contrastive learn-
ing techniques on enhancing model performance compared to conventional training methods,
with an emphasis on evaluating model quality using the Root Mean Square Deviation (RMSD)
metric. The process of assessing the accuracy of structural models when the actual 3D struc-
ture is unknown is referred to as General Model Quality Assessment. Current techniques
for predicting 3D RNA structures assess models at various stages, but a singular, consistent
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methodology proves ineffective. Consequently, researchers often face challenges in selecting
the native-like 3D RNA structure from a multitude of available predictions.

The dataset utilised in this study comprises RNA structural data sourced from three dis-
tinct origins: two established, state-of-the-art databases and one proprietary dataset created
explicitly for this research. The focus is solely on 3D RNA structures. This research utilises
open-source software tools for extracting features from molecular structures and encoding
them into graph representations.

The methodology involves developing a comprehensive computational pipeline that pro-
cesses 3D RNA structures, converts them into graph format, and evaluates various machine
learning approaches, including contrastive learning frameworks. Notably, the study does not
address RNA folding prediction, molecular dynamics simulations, or experimental validation
of structures. The theoretical framework is informed by literature on graph neural networks
and structural bioinformatics, while computational constraints limit the analysis to struc-
tures containing fewer than 250 nucleotides.

The expected deliverable is a validated pipeline for RNA structure analysis that demon-
strates improvements in RMSD performance metrics. Results will be tailored to the RNA
structure domain and may not be directly applicable to other molecular structure prediction
tasks.



Chapter 2

Related work

This chapter highlights the importance of identifying improved methodologies for managing
and analyzing the 3D structure of RNA data.

2.1 Preliminaries
Preliminaries were divided into two groups:
¢ modelling - approach to model 3D RNA structure,

* quality assessment - comparing and scoring 3D RNA structures.

Both approaches need domain knowledge to be properly implemented.

2.2 SLR method

2.2.1 PICO

The Population, Intervention, Comparison, and Outcomes (PICO) framework proposed by
Kitchenham and Charters [17] was developed to identify keywords during a literature review.

The following keywords were used for querying knowledge sources

‘ main keyword ‘ synonyms
Population | bioinformatics, machine learn- | RNA geometry, RNA conforma-
ing, 3D RNA models tions,RNA models
Intervention | Quality assessment, 3D RNA | Quality control, 3D model anal-
modeling, structure validation | ysis, conformational analysis
Comparison | Assessment metrics, RNA | Structural evaluation crite-
quality benchmarks, 3D struc- | ria, quality scoring, reference
ture comparison structures
Outcome Assessment results, accuracy, | Evaluation outcomes, precision
structure quality scores metrics, quality indices

2.2.2 Aim of the Systematic Literature Review (SLR)

The primary aim of this Systematic Literature Review (SLR) is to critically analyse and syn-

thesise current methodologies, assessment metrics, and computational tools used for the qual-

ity evaluation of 3D RNA models.

13
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This systematic literature review aims to map the existing body of research on 3D RNA
quality assessment, addressing knowledge gaps. Additionally, this review aims to support the
development of novel or improved methods for assessing the quality of the RNA model.

2.2.3 Research questions
To achieve these objectives, the SLR is guided by the following research questions:

RQ1 What state-of-the-art methods are used for the general quality assessment of 3D RNA
structures?

RQ2 How do the current methods for RNA structure quality assessment compare in terms of
accuracy, robustness, and ease of application?

RQ3 What approaches are utilised in various biochemical fields of study for applying Graph
Neural Networks and regression models?

RQ4 Are there any challenges and limitations in the current approaches to 3D RNA quality
assessment?

2.2.4 Search process

The niche related to this study is narrow. Therefore, using search engines to search for ar-
ticles mainly yields irrelevant results or an empty list. Therefore, a more effective approach
was to apply the snowball technique. The initial group of papers follows Rosetta [18], RASP
[19], RNA KB potential [20], 3dRNAscore [21], DFIRE-RNA [22], RNA3DCNN [23], Atomic
Rotationally Equivariant Scorer (ARES) [24], and lociPARSE [25].

The search process was completed with RNAGCN [26] being found. The work presents an
approach similar to that presented in ARES, based on atomic interactions.

The method terminated once all findings had been exhausted.

Selection criteria

The application of the following criteria decides whether to consider such an entry/paper:
SC1 is it bioinformatics related [YES/NO]

SC2 is it motifs quality assessment/modelling [YES/NO]

SC3 is it based on graph representation [YES/NO]

SC4 is it accessible by PUT resources [YES/NO]

2.3 Current methods for RNA structure quality assessment
compared in terms of accuracy, robustness, and ease of
application?

RNAGCN does not provide instructions or weights for their graph neural network model.
ARES provides complete instruction with all the necessary tools to run the model.
The range of data quality used to train the ARES model has a peak shifted beyond the 5
A RMSD, which depicts that the potential model will be best for analysing the model of the
investigated range of interest, 0-10 A.
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lociPARSE also provides complete instructions with all the necessary tools to run the
model. The lociPARSE training set clearly shows that the distribution mean is around 3 A
RMSD models in the training set. The conclusion could lead to the idea that lociPARSE will
be better for assessing smaller RMSD due to a more precise dataset.

2.4 Graph Neural Network approaches in biochemical studies

Graph Neural Network framework [27] offers exceptional adaptability in diverse applications,
from property prediction to molecular dynamics simulations [28]. Its hierarchical nature
facilitates scaling to larger systems while maintaining local chemical accuracy. The ability to
incorporate physical constraints and symmetries through specialised layers and loss functions
represents a significant advantage over traditional methods.

Despite these advantages, several critical limitations warrant consideration. The first of
these is the substantial data requirement for practical training, which is particularly chal-
lenging given the limited availability to replicating experimental datasets in materials sci-
ence. The computational complexity of input preparation and model optimisation presents
additional challenges, requiring significant computational resources and expertise.

Implementing GNNSs requires expertise in both domain knowledge and deep learning. The
approach suffers from limited interpretability of learned representations due to the non-linear
nature of message passing.

2.5 Challenges and limitations of 3D RNA representations

Following studies presents different approaches in assessing 3D RNA structures:

* ROSETTA [18],

RASP [19],

RNA KB potential [20],

3dRNAscore [21],

L[]

DFIRE-RNA [22],

RNA3DCNN [23].

Those approaches utilise domain knowledge to determine whether 3D RNA structure is
native-like. The main approach presented in the papers is the minimisation of the energy
difference between atoms.

ROSETTA combines low-resolution conformational sampling through fragment assembly
with a sophisticated full-atom refinement phase, leveraging a physically realistic energy func-
tion that includes critical atomic interactions. The approach is efficient for motifs up to 12
nucleotides in length, accurately capturing complex features such as non-canonical base pairs
and irregular backbone conformations. Its limitation manifests through multiple symptoms
of poor conformational sampling, including non-convergence of the lowest-energy models, an
inability to sample conformations proximate to the native state, and failure to achieve energy
levels comparable to those of the native state. These sampling inadequacies become progres-
sively more pronounced as motif size increases, suggesting fundamental constraints in the
method’s ability to handle larger RNA structures.
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RASP is a knowledge-based potential derived from a carefully curated set of non-redundant
3D RNA structures. RASP’s architecture incorporates both local and non-local interactions
through an information theory-optimised framework, enabling accurate discrimination be-
tween native and non-native conformations. The full-atom variant of the potential (RASP-
ALL) demonstrates remarkable sensitivity in capturing both canonical base pairs and non-
canonical interactions that are prevalent in functional RNA molecules. RASP successfully
identified structural perturbations in experimental systems, including the effects of destabil-
ising mutations in the self-splicing group.

RASP has several noteworthy limitations. The primary among these is imposed by the
relatively small set of experimentally determined RNA structures. The statistical potential’s
derivation from merely 85 non-redundant structures, necessitated by the technical challenges
associated with RNA structure determination, potentially circumscribes its generalizability.

A significant methodological limitation lies in the absence of a solvation term within the
current framework. This omission potentially compromises the accuracy in evaluating highly
unfolded or non-compact RNA conformations. This limitation is particularly salient given the
established importance of solvation effects in 3D RNA structures. Furthermore, the current
implementation cannot minimise energy scores, a feature that has demonstrated substantial
utility in alternative approaches, such as ROSETTA [18].

The RNA KB potential presents an approach to RNA structure evaluation through the
development of fully differentiable knowledge-based (KB) potentials in both coarse-grained
and all-atom representations. The authors derived these potentials from a carefully curated
dataset of 77 high-resolution 3D RNA structures, employing sophisticated statistical meth-
ods to handle regions with low counts. The distinctive feature of the methodology lies in its
distance-based potential framework, which implicitly incorporates various RNA interactions
without requiring explicit parameterisation of individual components.

The methodology exhibits several notable constraints that warrant consideration. First,
the relatively small training dataset of 77 3D RNA structures, although carefully curated,
may limit the model’s potential to capture the full spectrum of RNA structural diversity. This
limitation is particularly significant given the growth in newly discovered RNA structures
and motifs. Second, the implicit treatment of electrostatics and solvent effects, while compu-
tationally efficient, represents a simplified approach that may not fully capture the complex
physicochemical interactions governing 3D RNA structure, particularly in cases involving spe-
cific ionic conditions or unusual solvent environments.

3dRNAscore is another knowledge-based potential for evaluating RNA tertiary structures
that uniquely combines energy dependencies. The method was developed using a dataset of
317 non-redundant 3D RNA structures. The potential’s distinctive feature is based on infor-
mation from the backbone torsion angles alongside traditional distance-based measurements,
enabling a more comprehensive evaluation of the structural characteristics of RNA.

The training set of 317 structures may not fully capture the entire spectrum of 3D RNA
structural diversity, potentially leading to bias in the statistical potential. The method’s treat-
ment of electrostatic interactions also represents a significant simplification of the complex
physicochemical reality. RNA molecules are susceptible to electrostatic interactions due to
their negatively charged phosphate backbone. The approach is not able to accurately score
such 3D structure examples.

DFIRE-RNA is an all-atom distance-dependent knowledge-based potential for RNA struc-
ture evaluation, derived from the distance-scaled finite ideal-gas reference state (DFIRE)
framework. The method employs a sophisticated statistical approach utilising 405 non-redundant
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RNA structures for training, with implementation of an ideal gas reference state that has
proven successful in protein 3D structure prediction.

The primary limitation stems from the method’s exclusive reliance on distance-dependent
parameters while neglecting crucial orientation-dependent interactions.

RNA3DCNN is a deep learning approach for RNA structure quality assessment utilising
3D convolutional neural networks. The method was trained using 414 non-redundant RNA
structures. The approach employs a unique strategy to evaluate 3D RNA structures at both
local and global levels by examining individual nucleotides within their spatial context. Two
distinct models were developed: one for evaluating near-native structures and one for assess-
ing broader structural spaces. The approach innovatively transforms RNA structural data
into a 3D grid representation with three channels (atomic occupation, mass, and charge),
enabling direct processing by 3D CNNs without manual feature extraction.

lociPARSE is a deep learning method for scoring RNA 3D structure quality that adapts
AlphaFold2’s Invariant Point Attention (IPA) architecture with locality-aware modifications.
Instead of predicting traditional RMSD metrics, the model trains on Local Distance Difference
Test IDDT) scores [29], which are superposition-free and capture the accuracy of the local
atomic environment. The architecture uses k-nearest neighbour information and edge-biased
attention to focus on spatial proximity between nucleotides, while maintaining invariance to
global rotations and translations. The model predicts both nucleotide-wise and molecular-
level quality scores, significantly outperforming existing statistical potentials and machine
learning approaches on RNA structure prediction benchmarks, including CASP15 targets.

The central limitation of the method is linked to the increasing computational power re-
quired for processing 3D RNA structures, primarily due to the need to perform a grid cube
calculation. The generalisation is based only on a small number of processed structures.
Therefore, the performance is dependent on only a small subset of previously seen schemes.



Chapter 3

Data description and applied
technologies

This chapter focuses on describing a feature extraction pipeline enhanced with third-party
tools.

Proper feature extraction from biological data can be challenging due to the complexity
of atomic interactions. The most important fact related to training data is that the model
will be as good as the data on which it was trained. Therefore, a significant amount of effort
in the thesis was devoted to preparing, testing, and validating the correctness of the data
structures achieved. The goal was to prepare a comprehensive description of RNA nucleotides,
encompassing all possible descriptions and features that can be extracted from the atomic
coordinates.

3.1 Representative set of non-redudant 3D RNA structures

The challenge of preparing high-quality data for training purposes is connected to the proper
distribution of RMSD values. Improper distribution of values implies improper results for
the potential model. Root of issues connected with a wrongly understood 3D RNA structure
pattern or associated with a higher RMSD value. Preparation of a dataset characterised by a
constant distribution of RMSD values is a significant challenge [30]1[31].

3.1.1 Creating diverse dataset
Naive elements movement

The mmCIF/PDB file consists of atom coordinates forming a larger structure; however, this
geometric manipulation approach is not proper for simulating real-world cases as it violates
fundamental physical constraints including bond lengths and angles that create unrealistic
covalent geometries, steric clashes when atoms are placed too close to each other, disrupted
electrostatic interactions and hydrogen bonding patterns crucial for base-pairing, and broken
sugar-phosphate backbone continuity. The approach also ignores the loss of structural cooper-
ativity inherent in RNA folding, where cooperative interactions between distant regions and
allosteric networks mean that local changes propagate throughout the entire structure, effects
that geometric manipulation completely disregards. The only advantage of this approach is
the control over RMSD values, which can be easily manipulated by adjusting the positions of
structural elements; however, this benefit comes at a significant cost to physical realism.

18
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Prediction tool use

Several scientists have investigated the problem of predicting 3D RNA structure. AlphaFold
3 [32], representing a significant breakthrough, extends its predictions beyond proteins to
predict RNA, DNA, and protein-nucleic acid complexes accurately. Boltz-1 [33] is another
recent deep learning model that shows promising results for RNA structure prediction. RNA-
Composer [34] employs fragment assembly methods and has proven to be a reliable tool for
generating RNA 3D structures from sequence data. Outputs from these modellers are most
probably inputs for the potential scorer. Nevertheless, the approach comes with drawbacks.
These predictors are resource-demanding; to generate a significant number of such models,
it is necessary to employ high-computation processing machines. Another drawback is the
constant and adjustable generation of the RMSD range. The models are deterministic com-
putation tools. Our experiments showed no significant change in results after modifying the
model’s parameters.

Molecular Dynamics tools

The group of simulation tools that mimics the world of inter-atomic interactions. The rep-
resentative of the group is OpenMM [35], a molecular dynamics simulation toolkit that cre-
ates a computational environment to simulate real-world interatomic interactions. The tool
implements classical mechanics using force fields (AMBER [36], CHARMM [37], OPLS [38])
that mathematically model inter-atomic forces, including bonded interactions (bonds, angles),
non-bonded interactions, and specialised terms for hydrogen bonding. The software propa-
gates changes through time while conserving energy and momentum, and modifies chemical

structures.

3.1.2 Considered datasets

During the work, experiments were conducted using three different datasets: lociPARSE,
ARES, and RNAQuANet, which represent different training/validation sets.

lociPARSE dataset

Dataset comprising training and test sets of 30 independent RNAs sourced from trRoset-
taRNA [39], along with CASP15 [40] experimental structures and all submitted predictions
downloaded from the CASP15 competition platform. Additionally, an their in-house curated
set of 60 non-redundant RNA targets was employed for hyperparameter optimisation. To gen-
erate 3D RNA models for training and validation, the researchers used both deep learning and
traditional methods, including six deep learning approaches (DeepFoldRNA [41] predicting
six models, trRosettaRNA with ten models, RoseTTAFoldNA [42] with one model, RhoFold
[43] with one model, and DRfold [44] with six models) and one molecular dynamics method.
The dataset was further augmented through PyRosetta [45] perturbation techniques, where
DeepFoldRNA decoys were perturbed using the FastRelax [46] program with both 5,000 and
10,000 iterations, generating two distinct perturbation variants per original decoy, resulting
in a total of 12 additional decoys. This systematic approach yielded 37 models per sequence
target, culminating in a total of 51,763 models for the comprehensive evaluation of 3D RNA
structure prediction methods. This method combined two approaches and utilised molecu-
lar dynamics and prediction tools. The lociPARSE set exhibits the best distribution of decoy
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Ficure 3.2: Distribution of lociPARSE validation set.

RMSDs, with the peak of the distribution located close to 2.5 A, which is presented on Figures
3.1, 3.2.

ARES dataset

The researchers created their dataset using a remarkably minimal approach; ARES was de-
veloped based on only 18 experimentally determined 3D RNA structures. To make a diverse
dataset of models with various RMSD values, they utilise the Rosetta FARFAR2 [47] sampling
method. The method employs the Monte Carlo method, which generates a spectrum of solu-
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tions aimed at minimising the internal score. The FARFAR2 is a fragment-based assembly
method that, in addition to generating results, utilises a database of known fragments and
combines them to create the final structure. Thanks to the approach, it is possible to predict
a significant number of structures with various RMSD values. One drawback comes with lim-
ited accuracy. This method is not capable of creating a low RMSD accurate structure. The
researchers from the ARES team generated 1,000 structural models of each experimentally
determined 3D RNA structure by utilising this method. Thanks to the method’s character-
istic, model generation is conducted in a blind, reference-less manner. The result can create
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both a native-like structure and a completely unrealistic one. The ARES set has the worst
distribution of RMSD values. According to Figures 3.3, 3.4 the peak of the distribution lies
around 7 A, which does not include 3D RNA structures that are easy to compare with each

other for finding the best conformation compromises.

RNAQuANet dataset
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The RNAQuANet dataset was compiled from a non-redundant high-resolution (<3 A) col-
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lection of 3D RNA structures extracted from the RNAsolo database [31], which contains RNA-
cleaned 3D structures generated through various experimental methods. From an initial set
of 1,840 structures, 737 passed through a rigorous filtering process that required: 3D RNA
structure resolution < 3 A to ensure high quality, at least one base pair included, at least
one unpaired nucleotide, the number of paired nucleotides being greater than or equal to un-
paired nucleotides, and structure sizes between 10-190 nucleotides. Each reference structure
was used to generate up to 30 alternative 3D RNA conformations using RNAComposer with
diverse secondary structure predictors (RNAfold [48], CONTRAfold [49], ContextFold [50],
CentroidFold [51], IPknot [52], RNAstructure [53], RNAshapes [54], HotKnots [55]), creating
a dataset with RMSD values ranging from 0.268 to 58.753 A and sequence lengths from 10
to 190 nucleotides. The final dataset was split into training (455 references, 10,890 3D mod-
els), validation (161 references, 3,968 models), and test sets (120 references, 2,932 models)
using K-means clustering [56] to ensure balanced distribution of structural characteristics.
The distribution of the RNAQuANet set is similar to that of lociPARSE, but is slightly shifted
towards higher RMSD values, according to histograms presented on Figures 3.5, 3.6.

3.1.3 Expectations

The lociPARSE dataset appears to be the most promising for training purposes due to its
wide distribution of RMSD values. The smaller the RMSD value, the better the model is at
recognising subtle relationships between nucleotides. With a higher value comes a broader
spectrum of possible solutions and a weaker typical pattern, which is a key clue in the training
process. After numerous training attempts, the lociPARSE dataset was identified as the most
effective source of knowledge.

3.2 Feature extraction process

The final prepared input to the RNAQuANet model consists of a graph with 35 edge features
and 79 node features.

The primary challenge in generating a pipeline for feature extraction was determining how
to handle varying numbers and modalities across different nucleotide feature sets. There
were investigated method that solves that problem. The regular concatenation of features
could result in a very long feature vector, which could be challenging for the trainer due to the
curse of dimensionality. This approach could also introduce a problem with defining a proper
null value for such fields, which do not describe particular nucleotides. In most cases, 0 is a
relevant value for many features, such as angles and distances. Therefore, setting the proper
value could be crucial for the entire model development, but the potential model should be
able to address the underrepresentation of particular fields. This approach, rather than a
solution, could cause the model to ignore fields written in these fields.

Another approach that was opted out of was compressing features into a smaller feature
vector by replacing unused features by particular nucleobase for each nucleotide configura-
tion. That could partially solve the previous problem, but it could introduce a new one where
the model assumes that these features are somehow related to each other. Finally, the feature
could be ignored again, due to a change in the feature domain.

The most promising idea introduced to the final solution involves splitting node features
into two sub-feature spaces. The common for each nucleotide, and specific to the particular
nucleobases.
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¢ 59 Common features:

— Bond distances: C1’-C2’, C5-C4’, C2’-02’, C2-N3, C3’-03’, C6-N1, 04’-C1’, O5’-C5’,
C4’-C3’, P-05’, C3-C2, C4’-04’, N3-C4, OP2-P, N1-C2, 03’-P, OP1-P, C5-C6,

- Bond angles: 03-P-O5’, 03’-P-OP1, C4-04’-C1’, C1’-C2’-C3’, C6-N1-C2, C1’-C2’-
02, C3-03-P, N1-C2-N3, 05’-C5-C4’, C5’-C4’-04’, P-O5’-C5’, C5-C6-N1, 04’-C1’-
C2’, N3-C4-C5, C2-C3’-C4’, C4-C3’-03’, C5’-C4’-C3’, 03’-P-OP2, O5’, C3’, OP1, C5’,
C4’, OP2, P, 03,

— Torsion angles: C4’-04’-C1’-C2’, C4-C5-C6-N1, C3’-03’-P-OP2, 03’-P-05’-C5’, C2-
N3-C4-C5, C1’-C2’-C3’-C4’, C5’-C4’-C3-03’, O5-C5’-C4’-C3’, C6-N1-C2-N3, N3-C4-
C5-C6, 05’-C5-C4’-04’, C3’-03’-P-OP1, C3-C4’-04-C1’, C2-C3-C4’-04’, C5’-C4’-
04’-C1’, N1-C2-N3-C4, C3-03-P-05’, C5-C6-N1-C2, P-O5’-C5-C4’, 04’-C1’-C2’-02’,
C4’-C3’-03-P, C5’-C4’-C3-C2’, 04’-C1’-C2’-C3’,

— Structure size (the number of nucleotides),

— One-hot encoded nucleobase [AUGC].
* 31 Adeine-specific features:

— Bond distances: C1-N9, C6-N6, C4-N9, C5-C4, N7-C5, N9-C8, C8-N7,

- Bond angles: N3-C4-N9, C1’-N9-C8, 04’-C1’-N9, C5-C4-N9, C1’-N9-C4, C8-N7-C5,
N9-C8-N7, N7-C5-C6, C5-C6-N6, N7-C5-C4,

— Torsion angles: N7-C5-C6-N1, C1’-N9-C8-N7, C4-N9-C8-N7, C5-C4-N9-C8, N9-C8-
N7-C5, 04-C1’-N9-C4, N7-C5-C6-N6, C2-N3-C4-N9, C8-N7-C5-C6, N7-C5-C4-N9,
C1-N9-C4-N3, 04-C1’-N9-C8, C4’-04’-C1’-N9, C8-N7-C5-C4,

¢ 18 Cithosine-specific features:

— Bond distances: C2-02, C4-C5, C1’-N1, C4-N4,

- Bond angles: N1-C2-02, C4-C5-C6, 04’-C1’-N1, C1’-N1-C6, C1’-N1-C2, C2-N3-C4,
N3-C4-N4,

— Torsion angles: C1-N1-C2-02, 04’-C1’-N1-C6, C2-N3-C4-N4, C1’-N1-C6-C5, C1’-
N1-C2-N3, C4-04-C1’-N1, 04-C1’-N1-C2.

¢ 18 Uracil-specific features:

— Bond distances: C2-02, C4-0O4, C4-C5, C1’-N1,

- Bond angles: N1-C2-02, C4-C5-C6, N3-C4-04, 04’-C1’-N1, C1’-N1-C6, C1’-N1-C2,
C2-N3-C4,

— Torsion angles: C1’-N1-C2-02, 04’-C1’-N1-C6, C1’-N1-C6-C5, C1’-N1-C2-N3, C4’-
04’-C1-N1, C2-N3-C4-04, 04’-C1’-N1-C2.

¢ 34 Guanine-specific features:

- Bond distances: C1-N9, C6-06, C4-N9, C5-C4, N7-C5, C2-N2, N9-C8, C8-N7,

- Bond angles: N3-C4-N9, C1’-N9-C8, C5-C6-06, 04’-C1’-N9, C5-C4-N9, C1’-N9-C4,
C8-N7-C5, N9-C8-N7, N7-C5-C6, N1-C2-N2, N7-C5-C4,

— Torsion angles: N7-C5-C6-06, N7-C5-C6-N1, C1’-N9-C8-N7, C4-N9-C8-N7, C5-C4-
N9-C8, N9-C8-N7-C5, 04’-C1’-N9-C4, C2-N3-C4-N9, C8-N7-C5-C6, N7-C5-C4-N9,
C1-N9-C4-N3, 04’-C1’-N9-C8, C6-N1-C2-N2, C4’-04’-C1’-N9, C8-N7-C5-C4.
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The primary challenge in generating a pipeline for feature extraction was determining how
to handle varying numbers and modalities across different nucleotide feature sets. There
were investigated method that solves that problem. The regular concatenation of features
could result in a very long feature vector, which could be challenging for the trainer due to
the curse of dimensionality. This approach could also introduce a problem with defining a
proper null. The current solution assumes an input vector of standard features. The problem
was solved using an autoencoder, an architecture that attempts to embed a feature vector
into a shorter one and then expand it back to its original size. Based on the RNAQuANet
dataset, four autoencoders were prepared, each for a different nucleobase. This approach, in
result of training optimisation, gives a vector of 7 elements, which are later concatenated with
the standard part of the feature vector. This solution not only compresses the input vector but
also preprocesses and identifies correlations in the given set of features, which facilitates final
model training.

In addition to the aforementioned features, one-hot encoding was used for each nucleobase
and the structure size.

The approach resolved all possible nullable features within the description vector and pro-
vided stable values for all feature components.

The following tools were used to extract features from mmCIF files:

e RNAgrowth tool to extract nucleobase features and all of the angles [57],
* x3DNA-DSSR tool to extract base pairing characteristics and classification [58],
¢ PDBfixer to solve the problem with atom incompleteness [35].

The pipeline is operating using an HTTP server packed into a single Docker image file.
It can therefore be run smoothly without any dependency issues. The result of the feature
extraction is encoded into a single file graph declaration suitable for use within PyTorch Ge-
ometric and numpy.



Chapter 4

Architecture - diverse approaches

The literature mentioned in Chapter 2 presents a broad view of possible approaches to solve
the referenceless 3D RNA quality assessment problem. The older methods mentioned, such as
RNA KB, and RASP, employ an analytical approach to this problem by modelling the physical
environment around RNA nucleotides and simulating fundamental atomic forces present be-
tween atoms. These physics-based methods evaluate structural quality by calculating energy-
like scores based on known principles of molecular interactions, including electrostatic inter-
actions, hydrogen bonding, and steric clashes. Essentially, these tools assess the realism
of 3D RNA structures by determining whether the predicted conformation is energetically
favourable according to established physical and chemical principles. This examination in-
volves factors such as appropriate atomic distances, proper hydrogen bond formation, realistic
bond angles and lengths, and overall structural stability. The passage appears to be estab-
lishing a foundation for contrasting these traditional physics-based approaches with newer
methodologies that may take more data-driven approaches to the same general quality as-
sessment challenge.

4.1 Deep learning approach

4.1.1 3D convolutional neural network

The newer approaches presented in Chapter 2 utilise machine learning methods. Convolution
in deep learning is a fundamental mathematical operation that forms the backbone of convo-
lutional neural networks (CNNs) [569]. At its core, convolution involves sliding a small matrix,
known as a filter or kernel, across an input (such as an image) and computing dot products at
each position to produce a feature map. The filter acts as a pattern detector.

RNA3DCNN utilises a 3D convolutional neural network, which was the first published
model based on convolution for the problem considered [23]. In general, convolutional neural
network layers are found to be the most effective use case within the field of image and video
processing. CNN’s main advantage is its invariant context, which is one of the key require-
ments that need to be addressed during the 3D RNA assessment. The RNA3DCNN model
employs a small architecture comprising four 3D convolutional layers with 8, 16, 32, and 64
filters, respectively. The first two layers utilise a 5x5x5 kernel, while the last two use a 3x3x3
kernel. Following the first two consecutive convolutional layers, a max-pooling layer with a
stride of 2 is applied. The network then includes one fully connected layer with 128 hidden
units, followed by the final output layer that produces a single nucleotide unfitness score. The
input to the network is a 32x32x32 voxel 3D image 4.1 with three channels representing the

26



4.1. Deep learning approach 27

FiGuRE 4.1: Visualisation of input data for RNA3SDCNN [23].

atomic occupation number, mass, and charge within a local environment surrounding each
nucleotide. All hidden layers use ReLU activation functions, and the output layer is linearly
activated. The network contains a total of over 4 million parameters. The proposed model
takes as input directly a 3D grid representation without any feature extraction. This method
represents a very simple approach; nevertheless, the technique was superior to the state of
the art at the time.

4.1.2 Convolutional Graph Neural Network
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Ficure 4.2: Visualisation of input data for ARES [24].

Graph Neural Networks (GNNs) are a type of deep learning architecture that utilises nodes
and edges to model relationships between data entities. Data can be stored on both edges and
nodes. The primary difference between regular convolution and graph convolution lies in the
way they model neighbourhoods. Graphs do not limit the number of connected nodes, enabling
the description of specific relationships between data nodes. In graphs, not only do features
play an essential role, but paths do as well. A single graph can consist of many connected
subgraphs. While data flow between subgraphs is less significant, it still occurs, creating sep-
arate environments that can interact with each other while remaining primarily focused on
internal interactions. This characteristic contributes to the success of the ARES architecture
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[24]. The researchers proposed an architecture that treats a raw cloud of points as nodes,
with edges representing distances between atoms. This approach successfully identifies the
existence of nucleotides and their relationships, such as base pairing. However, this architec-
ture suffers from inadequate analysis of larger structures due to the fine granularity of data.
Information can only be mixed within neighbourhoods, which works well until we realise that
most data flow remains confined within individual nucleotides. A natural next step would be
to adopt a coarser-grained data representation.

4.1.3 Transformer architecture
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Ficure 4.3: 1ociPARSE architecture [25].

The advancement of large language models (LLMs) raised interest in implementing trans-
formers in other research areas. One of them was bioinformatics, as Google’s DeepMind an-
nounced a model capable of predicting 3D structure of proteins, known as AlphaFold 2 [60].
The core of the model is invariant point attention, represented as transformer adaptation
for predicting the next position of an element in a sequence, based on its previous position.
The researchers from the lociPARSE [25] team got an idea to implement this approach in
the 3D RNA world. Unlike the original AlphaFold2 implementation, lociPARSE introduces
locality-aware geometry and edge-biased attention to convert nucleotide pair features to edge
adjacencies by considering a set of K-nearest neighbour nucleotides (k=20) to capture the local
atomic environment of each nucleotide based on Euclidean distances between atoms between
nucleotide pairs. The model utilises coordinates from the point cloud, specifically focusing
on three key atoms for nucleotide frame construction. Local nucleotide frames are defined
from the Cartesian coordinates of P, C4’, and glycosidic N atoms. They took this element
from the AlphaFold system and trained it on their created dataset of 3D RNA data. Un-
like existing machine learning methods that estimate superposition-based root-mean-square
deviation (RMSD), lociPARSE estimates Local Distance Difference Test (IDDT) [29] scores
capturing the accuracy of each nucleotide and its surrounding local atomic environment in a
superposition-free manner, before aggregating information to predict global structural accu-
racy. The IDDT metric is normalised, where 1 represents an ideal structure and 0 represents
the opposite. The IDDT offers several advantages over RMSD, being superposition-free. The
results demonstrated that lociPARSE significantly outperforms existing statistical potentials
(rsRNASP [61], cgRNASP [62], DFIRE-RNA [63], and RASP [64]) and machine learning meth-
ods (ARES and RNA3DCNN). However, the result appeared promising, but it requires much
more computational power to not only train but also to run the system, as evidenced by the
need for training on an 80-GB NVIDIA A100 GPU for 50 epochs.
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4.2 RNAQuANet Architecture
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RNAQuANet architecture represents a hybrid of the models mentioned above, combining
solutions from both the transformer-based architecture presented in the lociPARSE and the
convolutional graph neural network demonstrated in the ARES. The architecture is split into
two complementary paths.

The architecture was built using the PyTorch Geometric library [65], which provides a
significant part of the well-known graph neural network layers.

The first path utilises Graph Convolutional Network (GCN) layers, which are the most
common approach to model chemical compounds. In terms of the 3D RNA general quality
assessment, it is the most promising use case. The general concept uses message passing for
exchanging data between units, both nodes and edges. The result of the process modifies each
entity in the graph: nodes and edges. This part begins with batch normalisation to achieve

more regular training. The Figure 4.5 presents the concept of message passing. Each node

Layer N Layer N+1

. e
update function j =
pooling function J{‘)

Ficure 4.5: The concept of GNN [66].

and edge aggregates its neighbourhood, and later, using a specific trained function, applies
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changes to itself.

The foundational component of this path consists of the first three layers implemented as
GATv2Conv [67] modules, which represents an improved version of the original Graph At-
tention Network (GAT) that systematically addresses key limitations inherent in the original
attention mechanism design. The attention mechanism is the key element of these layers,
introducing dynamic relationship modelling capabilities that fundamentally transform how
the network processes graph-structured data. Unlike traditional graph neural networks that
apply uniform aggregation schemes, the GATv2Conv adaptation enables the model to distin-
guish the relative importance and value of all nodes within the graph structure and selectively
treat neighbouring nucleotides based on their computed relevance scores. The selective atten-
tion mechanism enables the network to adaptively focus on the most significant neighbouring
nucleotides and suppress less relevant connections. Furthermore, the enhanced attention
computation in GATv2Conv enables better capture of long-range interactions between dis-
tant nucleotides in the 3D RNA structure, which is crucial for understanding global structural
patterns and conformational stability that may not be apparent through local neighbourhood
analysis alone. The layer takes three elements on its input: node features, in the form of
a vector for each node; edges, in the form of pairs of nodes; edge features, in the form of
a vector for each nodes pair in distance of 16 A from C5 atoms. The last layer is a regu-
lar convolution layer without attention, which processes only node features and spatial data.
The modification of the previous layer was motivated by the need to increase focus on edge
features; this change compressed the computational effort into a smaller calculation space.

The middle part of architecture brings aggregation, which is crucial in Graph Neural
Network-based architectures. The primary purpose is to flatten the graph space information
into a single feature vector. Due to the main advancement of GNN, which is the ability to pro-
cess graphs of various sizes, creating a stable function for aggregation is not a trivial task. The
well-known examples, like mean, max/min (which find representatives), and sum (which learn
structural properties) [68], do not perform very well for more complex calculations. Therefore,
in recent years, new aggregation functions have emerged. The RNAQuANet architecture was
tested using many examples of aggregation functions. The best results were achieved with the
use of SetTransformerAggregation [69]. The aggregation architecture is specifically designed
for learning on sets while maintaining permutation invariance. In simple terms, it works by
treating graph nodes as a set of items and utilising a modified transformer architecture to
aggregate their features into a single, unified graph representation. Unlike traditional atten-
tion mechanisms used in sequence modelling, Set-Transformer removes positional encoding
since the order of nodes in a graph shouldn’t matter for the final prediction. The architecture
consists of two main components: an encoder that processes the input node features through
multiple attention blocks to capture dependencies between different nodes, and a decoder that
uses a special "seed vector" within attention blocks to create an initial readout vector, which
is then further processed through self-attention modules and feedforward layers to produce
the final graph-level representation. This approach is efficient because it can exploit depen-
dencies between nodes when learning permutation-invariant representations, rather than
simply embedding each node independently and then combining them as simpler methods do.
The Set-Transformer essentially learns which nodes to pay attention to and how to incorpo-
rate their information optimally for the specific task, making it more adaptive and expressive
than basic pooling functions like sum, mean, or max, while still ensuring that the same graph
will produce the exact representation regardless of how its nodes are ordered.

The final path consists of two simple, fully connected layers. The primary purpose is to
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expand the solution’s architecture capacity; the input to these fully connected layers remains
constant.

The main advantage of the RNAQuANet architecture is its size, which comprises approx-
imately 647,000 parameters, significantly lower than those of other state-of-the-art methods.
It is possible to train the model using a consumer GPU in under 1 hour. The interference
takes seconds and does not require a specific GPU for computation.

ListinG 4.1: PyTorch log of architecture layers parameters number.

| Name | Type | Params |
0 | norml | BatchNorm | 158 |
1 | GATconvl | GATv2Conv | 62.3 K |
2 | GATconv2 | GATv2Conv | 212 K |
3 | GATconv3 | GATv2Conv | 212 K |
4 | GCN2Convl | GeneralConv | 52.9 K |
5 | fel | Linear | 6.3 K |
6 | fc2 | Linear | 80 |
7 | dropout | Dropout | O |
8 | activation | ReLU | O |
9 | aggregation | SetTransformerAggregation | 102 K |
647 K Trainable params

TaBLE 4.1: RNAQuANet Layer Architecture.

Node Node Edge

Layer Name Input Size | Output Size | Features
BatchNorm 79 79 -
GATv2Convl (heads=4) 79 316 35
ReLU + Dropout 316 316 -
GATv2Conv2 (heads=4) 316 316 35
ReLU + Dropout 316 316 -
GATv2Conv3 (heads=4) 316 316 35
ReLU + Dropout 316 316 -
GeneralConv 316 79 35
ReLU + Dropout 79 79 -
SetTransformerAggregation 79 79 -
Linear (fcl) 79 79 -
ReLU + Dropout 79 79 -
Linear (fc2) 79 1 -
Final ReLU 1 1 -




Chapter 5

Learning process description

The training is the crucial part of machine learning model development. To achieve plausible
results, it is necessary to balance the training set to avoid possible skewness towards the most
populous representatives. In terms of 3D RNA structures, it is particularly challenging due
to the size of the training set. Most experimentally determined 3D RNA structures belong to
two RNA families: tRNA and rRNA are usually redundant.

The learning process was divided into two methods: classical training and contrastive
learning, and utilised a selected dataset comprising lociPARSE-based, RNAQuANet-based,
and ARES-based approaches.

5.1 Classical training

The classical training approach employed in this study follows a conventional supervised
learning methodology where each sample/3D RNA model from the dataset is utilised exactly
once during each training epoch, with each input paired with its corresponding target value.
To mitigate the effects of gradient accumulation that can occur when similar data points
are processed sequentially, a common artefact arising from the systematic nature of dataset
construction, the training data undergoes random shuffling before each epoch. The dataset
utilised in this training process consists of clusters of structural decoys, which are compu-
tationally generated three-dimensional RNA structure models predicted for every reference
structure considered. These decoys serve as negative examples that challenge the model to
distinguish between accurate and inaccurate structural predictions, thereby enhancing the
robustness of the learned representations. A critical component of the training methodol-
ogy is centered on the strategic use of the RMSD score. The implementation of this metric
required careful consideration of meaningful threshold boundaries to ensure effective learn-
ing. While the distinction between structures with RMSD values of 2 A and 5 A represents
a significant difference in terms of practical utility, the quality of structures with RMSD val-
ues of 30 A and 40 A is equally unsuitable for meaningful biological interpretation. Through
RNA-Puzzles challenges and analysis, combined with domain expertise, an optimal RMSD
threshold of 15 A was established as the boundary for training significance. This threshold
creates a densely continuous filled training space where differences between models reinforce
small distances, ensuring that the model learns proper distinctions between structures of
varying quality. This approach maximises the learning potential within the biologically rele-
vant range while avoiding the computational overhead associated with learning distinctions
between uniformly poor-quality structures, which can be classified simply as unusable. The

32
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model training was limited by the early stopping method, which analyses 10 epochs backwards
and decides to stop training if there is no improvement in Mean Absolute Error results during
that period. It was dictated by better generalisation and the exclusion of outliers, which were

introducing bias to the final result.

5.1.1 Training on dataset proposed for RNAQuANet
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Ficure 5.1: Performance of RNAQuANet-based model training.
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The Figure 5.1 presents the results of model training using the RNAQuANet dataset. The
training loss is clearly noisy but steadily decreasing over time. The overfitting is barely visible,
but a global optimum was achieved very quickly. The best validation metrics were a Mean
Absolute Error of 3.4 A and a mean squared error of 24 A.

The Figure 5.2 presents a boxplot for the prediction error by each structure size in the
validation set. The results are very promising, despite some outliers, such as in 23, 38, and
41 nts. The mean value of errors is placed below 5 A and does not grow significantly with the
increase in the number of nucleotides.

5.1.2 Training on dataset proposed for ARES

The Figure 5.3 presents the results of model training using the ARES dataset. In contrast to
RNAQuANet-based training, the trend is not noisy and decreasing in training for both MAE
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Ficure 5.4: ARES-based validation set prediction error distribution.

and MSE. The validation trend shows very quick and significant overfitting. It was caused by
an undifferentiated training set. The best metrics for validation are: MAE 1.6 and MSE 4.28.

The Figure 5.4 Figure [reference] shows a boxplot displaying prediction errors for different
structure sizes in the validation dataset. The results remain consistent across structure sizes,
with the exception of 19-nucleotide structures, which exhibit a notably high number of outlying
values.

5.1.3 Training on dataset proposed for lociPARSE

The Figure 5.5 presents the results of model training using the lociPARSE dataset. It is char-
acterised by significant noise in the training loss. In contrast to validation, which presents
as a smooth, slowly decreasing line. It was the longest-lasting training, which took approxi-
mately 30 minutes. The best metrics for validation are: MAE 1.24 and MSE 4.57.

The Figure 5.6 presents a boxplot for model perfomance by each structure size in the val-
idation set. Despite the noisy beginning of the plot, which is caused by the cardinality of the
given groups, the rest of the part, despite minor outliers, looks satisfactory. This training was
chosen later as an indicator for later improvement.
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5.2 Contrastive learning

The classical learning assumes the model’s best effort to pay attention to details that can be
later generalised for other 3D RNA structures. Even a small dataset imbalance can cause bias
and overshadow less numerous examples. Another problem that arose during evaluation was
the model’s inability to distinguish small changes. To understand the grounds, it is necessary
to examine the loss function more closely. It is clearly visible that the model during training is
penalised with the value of the distance between the expected result and the prediction. One
of the evaluation approaches assesses the quality of 3D RNA structure models by ranking
them from the best to the worst structure, based on the RMSD value. The potential model
needs to be able to predict values that will correspond to the proper order of expected results.
The classical training focuses on a single value result, assuming that the context will emerge
during the training process. That can be impossible with the few distinctive structures avail-
able. It was necessary to improve the loss function to put attention on the differences between
models from the given model group.

There was no such loss function proposition in the literature. The first attempt was made
to introduce Spearman’s correlation to the MAE loss function. Due to the non-differentiable
nature of the loss and the sophisticated method of calculation, the training process is charac-
terised as insensitive. The Figure 5.7 presents the value of Spearman correlation across the

training process. The value barely ever exceeds 0.3, which can be classified as noise.
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Ficure 5.7: Spearman correlation in lociPARSE training.

5.2.1 Simple contrastive learning

The approach is based on a simple assumption. In each 3D RNA model group, the trainer
takes each possible pair of entities, performs training steps and compares the results. If
the prediction value depicts that a better 3D RNA model has a lower RMSD value, then the
loss is simply the average of the MAE metric from both structures. If not, then add 1 to the
calculated MAE value. This penalty mechanism effectively guides the model toward learning
the correct structural quality hierarchy by increasing the loss when predictions contradict
the RMSD-based ranking system. The pairwise comparison strategy ensures that the model
encounters diverse structural variations within each training iteration, exposing it to subtle
conformational differences that might otherwise be overlooked in standard training protocols.
Additionally, by operating on pairs rather than individual structures, the method inherently
captures relative structural quality assessments, which are often more reliable than absolute
quality predictions in the context of 3D RNA structure evaluation. The approach may seem
trivial, but it significantly improves the model’s understanding of the contrast between 3D
RNA models.

5.2.2 lociPARSE training

The Figure 5.8 presents the results of model training using the lociPARSE dataset. It is
visible that after the first iteration, a global optimum loss was achieved. The green spikes
depict the frequency of the swapped order of the two models. Overfitting is less significant in
this example than in the RNAQuANet example, but the MAE/MSE values are lower than those
obtained from the classical approach. The primary difference from RNAQuANet’s contrastive
training is the steady MAE/MSE validation value.

The Figure 5.9 displays a boxplot showing prediction errors across different structure sizes
in the validation dataset. The results are nearly identical to those obtained using the classical

method, suggesting significant potential for improved ranking in the final assessment.
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Ficure 5.9: lociPASRSE-based validation prediction error distribution.

5.2.3 ARES training

This training was omitted due to the lack of a viable approach for such a group cardinality.
The classes of similar structures consist of 1000 decoys; therefore, the method is not applicable
here.

5.2.4 RNAQuANet training

The Figure 5.10 presents the results of model training using the RNAQuANet dataset. It is
visible that after the first iteration, a global optimum loss was achieved. The green spikes
depict the frequency of the swapped order of the two models. Overfitting is significant, but
the MAE/MSE values are lower than those from the classical approach.

The Figure 5.11 presents prediction errors for various structure sizes in the validation data
using a boxplot format. The results demonstrate higher levels of noise, most notably within
the central portion of the structure length distribution.
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Ficure 5.11: RNAQuANet-based validation prediction error distribution.



Chapter 6

Evaluation of the proposed models

The evaluation was conducted based on the published challenges considered in the five rounds
of RNA-Puzzles competition. The contest repository contains models submitted by the commu-
nity for challenges that have been considered. The most time-consuming part was connected
with preprocessing 3D structures. Most of the 3D predictions were incomplete; therefore, we
needed to refine them and reject any disputes that could not be resolved.

The evaluation was conducted on three model families: RNAQuANet, lociPARSE, and
ARES. The last two were additionally retrained using the final lociPARSE dataset to ensure
clean training without the influence of the evaluation dataset.

6.1 Overall models performance

The Figure 6.1 presents particular ranking places in the Spearman Correlation coefficient-
based ranking for each RNA-Puzzles challenges. The first place, which is the most important
measure, is nearly evenly split between all of the models, with a slight favour to lociPARSE.
ARES is the best model in 7 competitions, lociPARSE in 9 and RNAQuANet in 6. Second place
is more in favour of ARES and lociPARSE, while third place sees about half of the results
coming from RNAQuANet. The Figure 6.2 presents each model’s ranking position across all
evaluations of the RNA-Puzzles challenges (the lower value the better). It is clearly visible
that ARES was trained on lociPARSE, and lociPARSE performs better in terms of single-
model prediction. The RNAQuANet model, which was trained using a contrastive approach,
presents the best opportunity for future improvement.

6.2 Best opportunity for RNAQuANet

This section focuses on three selected RNA-Puzzles challenges where the RNAQuANet model
presented sufficient results. These editions highlight RNAQuANet’s most significant capabil-
ities.

39
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Ficure 6.1: Overall position of models in ranking for each of the 22 RNA-Puzzles challenges.

6.2.1 RNA-Puzzles 18th challenge

Thirteen teams participated in the particular challenge, submitting 62 predicted models. The
structure length is 71 nucleotides. The RMSD mean of all structures is 14.52 A, and the
standard deviation is 6.50.

The Figure 6.3b presents the range of models submitted by contestants. The set was quite
rich with various RMSD values.

The table shows that ARES usually outputs better MAE/MSE results; however, RNAQuANet,
which was trained in a contrastive manner, also produces a reasonable ranking.

The Figure 6.4 shows the expected/achieved ranking of 3D RNA models. It is clearly visible
that a significant correlation exists in real-life use cases, which could be sufficient to distin-
guish between good and bad examples.
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Ficure 6.2: Overall position of models in ranking for each RNA-Puzzles challenges.

6.2.2 RNA-Puzzles 25th challenge

Nine teams participated in the particular challenge, submitting parsable 47 predicted models.
The structure length is 69 nucleotides. The RMSD mean of all structures is 5.75 A, and the
standard deviation is 3.85. This dataset is narrower than the previous one. Definitely, it is
one of the most difficult sets due to the high number of structures from the narrow, native-like
models.

In the 25th challenge, RNAQuANet was not the best model, but the quality was not far
from lociPARSE. The Spearman correlation coefficient of the best-trained RNAQuANet model
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TaBrE 6.1: Developed models comparison for 18th challenge from RNA-Puzzles competition.

Model Spearman | MAE | MSE
RNAQuANet contrastive train,

trained using LOCIPARSE dataset 0.67 11.44 | 160.64
ARES,

trained using LOCIPARSE dataset 0.44 9.21 | 116.02
RNAQuANet limited features,

trained using RNAQuANet dataset 0.36 6.81 | 65.21
LOCIPARSE 0.36 - -
LOCIPARSE self-trained 0.36 - -
RNAQuANet contrastive train with limited features,

trained using LOCIPARSE dataset 0.30 11.67 | 174.16
RNAQuANet limited features,

trained using LOCIPARSE dataset 0.26 12.13 | 185.45
ARES 0.18 8.04 | 95.68
RNAQuANet,

trained using LOCIPARSE dataset 0.14 11.95 | 182.65

ranked second overall.

The figure 6.6 shows the expected/achieved ranking of 3D RNA models. The correlation is
sparse in the middle of the ranking, which can depict model problems with assessing quality
in a 2-4 A value range.
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6.2.3 RNA-Puzzles 32nd challenge

Fifteen teams participated in the particular challenge, submitting 106 predicted models. The
structure length is 49 nucleotides. The RMSD mean of all structures is 15.23 A, and the
standard deviation is 6.68. The RMSD space is wide and evenly distributed. The accuracy of
the RMSD prediction in terms of ordering significaly rise with assessing worse group of 3D
RNA models 6.8.
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TasLE 6.2: Developed models comparison for 25th challenge in RNA-Puzzles competition.

Model Spearman | MAE | MSE
LOCIPARSE 0.71 - -
RNAQuANet limited features,

trained using LOCIPARSE dataset 0.64 3.98 | 27.67
LOCIPARSE self-trained 0.63 - -
ARES,

trained using LOCIPARSE dataset 0.62 2.65 | 18.01
RNAQuANet contrastive train,

trained using LOCIPARSE dataset 0.42 3.65 | 26.32
RNAQuANet,

trained using LOCIPARSE dataset 0.39 3.50 | 25.81
ARES 0.29 3.66 | 20.97
RNAQuANet contrastive train with limited features,

trained using LOCIPARSE dataset 0.26 3.51 | 26.26
RNAQuANet limited features,

trained using RNAQuANet dataset -0.25 5.31 | 45.27

Ranking [PUZZLE 25]

0

20 2
RMSD rank

Ficure 6.6: Limited features (common only) RNAQuANet model vs ground truth for 25th challenge in RNA-Puzzles
competition.

6.3 Further improvement of RNAQuANet

This section focuses on contest editions in which RNAQuANet performs the worst. The 28th
edition was selected as the most interesting edition due the RMSD ranking placement.

6.3.1 RNA-Puzzles 28th challenge

Eleven teams participated in the particular challenge, submitting 72 predicted models. The
structure length was 77 nucleotides. The RMSD mean of all structures is 6.19 A, and the
standard deviation is 4.46. The RMSD space was concentrated in the range 0-5 A, with some
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TaBLE 6.3: Developed models comparison for 32nd challenge from RNA-Puzzles competition.

Model Spearman | MAE | MSE
RNAQuANet contrastive train,

trained using LOCIPARSE 0.51 11.10 | 154.78
RNAQuANEet,

trained using LOCIPARSE 0.50 11.32 | 162.25
RNAQuANet contrastive train with limited features,

trained using LOCIPARSE 0.44 11.34 | 166.86
ARES,

trained using LOCIPARSE 0.44 10.08 | 142.16
RNAQuANet limited features,

trained using LOCIPARSE 0.17 11.85 | 179.91
LOCIPARSE 0.02 - -
ARES -0.09 8.38 | 113.34
RNAQuANet limited features,

trained using RNAQuANet -0.09 7.84 | 86.89
LOCIPARSE self-trained -0.15 14.89 | 266.17

outliers beyond 10 A.
Table 6.4 clearly shows that RNAQuANet was unable to handle this competition properly.
The problem can be explained by Figure 6.10, which clearly shows that the beginning of
the ranking is anticorrelated. It is highly probable that models learn some 3D RNA motifs as
invalid. The ranking was accurately predicted to end.
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TaBLE 6.4: Developed models comparison for 28th challenge in RNA-Puzzles competition.

Model Spearman | MAE | MSE
LOCIPARSE 0.82 - -
LOCIPARSE self-trained 0.78 - -
ARES 0.75 3.84 | 20.22
ARES,

trained using LOCIPARSE 0.33 2.77 | 21.30
RNAQuANet limited features,

trained using LOCIPARSE 0.13 3.13 | 25.09
RNAQuANet contrastive train,

trained using LOCIPARSE 0.07 297 | 24.31
RNAQuANet,

trained using LOCIPARSE -0.03 291 | 24.40
RNAQuANet contrastive train with limited features,

trained using LOCIPARSE -0.13 3.07 | 25.52
RNAQuANet limited features,

trained using RNAQuANet -0.13 6.24 | 48.78

Ranking [PUZZLE 28]
series

0 2 4 6 8 10 12 14 16 18 20 22 24 2 28 30 32 34 36 38 40 42 44 46 48 S0 52 54 S6 B 60 62 64 66 68 70 72
RMSD rank

Ficure 6.10: Limited features RNAQuANet model vs ground truth for 28th challenge in RNA-Puzzles competition.



Chapter 7

Summary

The proposed RNAQuANet architecture hybrid system, with only 647,000 parameters, is sig-
nificantly more efficient than existing state-of-the-art methods. The model can be trained
on consumer GPUs in under an hour and performs inference in seconds. The innovative
contrastive learning approach penalises incorrect structural quality rankings, improving the
model’s ability to distinguish between structures with similar RMSD values. Here, a compre-
hensive feature extraction pipeline that processes 79 node features and 35 edge features from
RNA structures, including bond distances, planar angles, torsion angles, and base-pairing
characteristics are developed. To handle variable feature sets across different nucleotides,
the system employs autoencoders that compress nucleotide-specific features while preserving
structural information.

RNAQuANet demonstrated competitive performance, achieving the best Spearman corre-
lation (0.67) for challenge 18 of RNA-Puzzles competition and showing particular strength in
ranking structures with diverse RMSD values. However, the model struggled with certain
structural motifs, as evidenced by its not entirely satisfactory performance, particularly in
challange 28, suggesting potential overfitting to specific structural patterns.

The model development process faced limited availability of high-resolution RNA struc-
tures (only around 700 representative structures) and constrained training data diversity.
The software infrastructure proved problematic, as non-robust tools like FR3D [70] created
bottlenecks due to faulty in the feature extraction pipeline, while many source structures con-
tained incomplete or invalid atomic coordinates that required extensive preprocessing. The
heterogeneous quality of existing RNA structural analysis tools necessitated the development
of custom solutions and workarounds.

Despite resource limitations and technical challenges, this work successfully demonstrates
that graph neural networks can effectively assess RNA structure quality referenceless. The
combination of architectural design, training strategies, and feature engineering provides a
foundation for future developments in computational RNA structural biology. The project’s
success, achieved with limited computational resources and problematic software infrastruc-
ture, highlights both the potential of machine learning approaches in structural biology.
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Chapter 8

Future work

In future work, it is essential to conduct comprehensive ablation studies to systematically
determine which features are responsible for the final result and quantify their individual
contributions to model performance. This analysis will likely lead to reducing the number of
features, which was the case with unsatisfactory model performance, as redundant or noisy
features often degrade predictive accuracy by introducing irrelevant variance into the learn-
ing process. A structured approach involving recursive feature elimination, SHAP analysis,
and correlation studies would help identify the minimal feature set that maintains or im-
proves performance while reducing computational overhead and potential overfitting.

A promising avenue would be to introduce higher-level motifs and structural patterns to
the feature space, moving beyond simple nucleotide-based representations. Currently, the
model operates only on nucleotide-based knowledge at the sequence level;, however, it may
require additional hierarchical support to fully comprehend the implications of torsion angle
changes. Incorporating known regulatory elements, secondary structure motifs, binding do-
mains, and conserved regions could provide the model with biologically meaningful context,
connecting sequence information to functional outcomes. This multi-scale approach would
enable the model to recognise patterns at different levels of biological organisation, from local
base-pair interactions to global structural domains.

Another compelling direction would be to introduce physics-aware neural networks that
not only operate on measurable experimental data but also are explicitly constrained by fun-
damental physical principles. These physics-informed architectures could incorporate differ-
ential equations governing molecular dynamics, empirical force fields describing atomic inter-
actions, and statistical mechanical principles that govern conformational sampling. By em-
bedding physical laws directly into the network architecture or loss function, the model would
be prevented from making predictions that violate established scientific principles while po-
tentially requiring less training data to achieve robust performance.

Finally, there is another pragmatic option to explore significantly larger neural network
architectures to determine whether the current solution’s memorisation and pattern recogni-
tion capabilities are fundamentally insufficient for the complexity of the underlying biological
system. This scaling approach would involve investigating transformer-based architectures,
graph neural networks capable of representing molecular topology, or ensemble methods that

combine multiple specialised models.
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